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In this paper we consider the quasiharmonic equation (1.11 in which 
the coefficients are analytically dependent on a small parameter p 
and when p = 0, it converts into a system with constant coefficients. 

We assume that among the roots of the fundamental equation 1 a,,g - s&‘LI 
= 0 there exist pure imaginary roots and zero roots, which are 
multiples of one another and differ from each other by a quantity of 
the form 2wpi/o (o is the period of the coefficients of the quasl- 
harmonic systems; p is an integer) and such that not all of the ele- 
mentary divisors corresponding to these roots are simple. 

In this article attention is mainly focused on those character- 
istics which arise in the examination of the quasiharmonic system in 
connection with the existence of the nonsimple elementary divisor of 

the matrix II a,~ - SgXll. 

Using the Newton polygonal method it is possible to establish the 
dependence between the structure of the matrix II od- SaXll and the 
quantities pi’y with respect to the integral powers into which 
characteristic roots (and exponents1 are developed. 

For the practical computation of the characteristic exponents, 
using substitution (2.11, algebraic equations are derived from which 
one determines the characteristic exponents in first approximation In 
the presence of elementary divisors of arbitrary power of the matrix 

II “,/j - $A II * 

The results obtained are applied to the examination of the stability 
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of periodic solutions of Quasilinear systems with many degrees of 
freedoms and in those special cases when the fundamental equation of 
the generating systems has pure imaginary and zero roots, the 
multiples of which are not equal to the number of groups of solutions 
corresponding to them. 

1. ht. us consider a quasiharmonic system 

(l-1) 

where the functions fd (t, p ) are periodic with respect to t with period 
o, and analytic with respect to the small parameter ~1 

he (h p) = f‘rs(O) + crf!‘d + l l l 

If p = 0 then the system (1.1) reduces to 

& (0) 
-g-- = i Q‘g2$O) (Q = cooat) 

B=l 
(1.2) 

Let us assume that among the roots of the fundamental equation 

1% - 3,,h 1 = 0 (3“ = 19 3‘B =O for r#p) (1.3) 

of the system (1.2) there exist roots with zero real parts; the roots of 
such type we will call critical. We assume that among the critical roots 
one encounters both multiple roots and roots which differ from each other 
by quantities of the form Pnp,,i /o where p, is an intewr, the number of 
the groups of solutions of system (1.2) corresponding to the critical 
roots which are not equal in their multiplicity. 

We first consider the case of resonance where among the critical roots 
X of the fundamental equation (1.3) there exist the zero and pure imanin- 
ary roots 

h= 0, h, = * $-pJ (u=1, . . . , r) (1.4) 

let q0 be the highest power of the elementary divisors of the matrix 

II asp - 8gXll corresponding to the zero root. Let us denote by coy the 
number of elementary divisors Ay, where y = 1, . . . , q. (if there is no 
elementary divisor from that series for any value of y then e = 0). The 

multiplicity of the zero root k, 
or 

and the n&r of the groups solutions 
m0 which corresponds to them are equal to 

k, = $ yeoy, 
Y=l 

m. = i e, 
y=1 

(1.5) 

Similarly, denote by q, the hibest power of elementary divisors, 
corresponding to each root of the pair A,, = + 2npui /o and eu,, as the 
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ru&er of elementary divisors (x - A,,))' with y = 1, . . . . Qa* 

The multiplicity k, of the root A, and the nunber of the groups of 
solutions na correspondiq to them are equal to 

%L Qu 

Jh = 2 ye,,, mu = 2 e,, (f.6) 
y=1 Y'l 

Denote by xli(t)...x,, (t) the solution of the fundamental system (l.l), 
defined by the initial conditions 

sjj(O, CL) = 19 %j (09 P) = O (s#i) 

Looking for the solution in the form of series 

&j(t) = 3&j(O)(t) + p"l(t) + . ' ' 
SI 

in which the functions x .“‘(t) 
*I 

satisfy initial conditions 

Zjj(O) (0) z I, &j(O) (0) = 0 ts# i) 

S&j(')(O) =S,j(2)(0) = . . . - 0 (sfi 8 = i) 

we obtain 

z,j(‘)(t) = \ i 588 (t -T)XbJ(*)(T)dT 
0 B=l 

cX#j"' = i; i fip(OZpj('-i)) 

isip= 

Then, in the limit of the first approximation, the characteristic 
equation of the system will be written as 

D(P, IL) = I q$“‘w +F$“(4 - 4%,p / = 0 (1.7) 

Ietpo be the root of equation (1.7) for p = 0 

D (p, 0) = j ..$) (0) - 6,,po ! = 0 (1.8) 

TO every root A,, AU of the fundamental equation (1.3) from the series 
(1.4), there corresponds a root of equation (1.8) equal to unity; con- 
sequently, the multiplicity of the root p0 = 1 of the equation (1.8) is 
equal to k = k, + 2k,+ . . . +2kr and the point cc = 0, p = 1 is critical. 

As it is known, for sufficiently small cc, the equation (1.7) has k 
roots p(p) for which p(O) = 1, and these roots will be expanded into 
series of integral pours of the quantity p I" where l< v < k. 

Let us denote by q the highest power of the elementary divisors, 
corresponding to the roots (1.4), i.e. the larwst of the nunbers qO, ql, 
. ..) q,. We derive conditions for which all k roots p(p), convertinK for 

cc = 0 into unity, will be expanded only in intepal power of the quanti- 
ties c, p112 , ***, /~l'~. Note that to every elementary divisor (A - AUP' 
of the matrix II a~- S,,gpXI[ there corresponds the elementary divisor 
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60 - 1)” of the matrix II x 
of the elemntary divisors @ 

(O) (0) - S,ppo II and therefore the nunber 
o - 1)” is equal to 

e, = coy + 2e,, +. . . + 2e, (1.9) 
The multiplicity k of the root p. of the characteristic equation (1.8) 

and the number of groups of solutions corresponding to it are 

k = i ye,., 
Q 

m=xe, (1.10) 
y=l Y-l 

Let us introduce in place of p the variable (I equal to 

o=p--l (1.11) 

lhe characteristic equation (1.7) changes into the form 

D (0, P) = I do) (4 + PG.? (4 - 68, (1 + 0) 1 = 0 (1.12) 

Fran (1.9) and (1.10) follows, that the matrix 

II &o(o’ (CfJ) - $3 (1 + a) il (1.13) 

throwh elementary transformations, can be reduced to the diawnal matrix 

{ Cl.. s Ci. s s C, } (1.14) 

in which the diagonal members Ci are equal to 

Ci= Ei(o) for i=l,...,n-m 

Ci=o Ei(s) for i=n-m++,...,n-m++l 

Ci ‘=’ ai g(j) * * * * forjIn_-Injx;J;i,.‘.:,‘n_‘m’+‘x;+ky’ * * . * ’ 
. . . . . . . . . . . . . . . . . . . . . ...* . . . . . . . . . . . . 

C, = aqE, (u) 

where Bi(a) are polynanials not reducing to zero for c = 0, and the 
nunbers K are equal to 

xy = e, + e2 +. . . +eu+ (1.15) 

ISpandiw the characteristic determinant (1.121, we represent the 
function Db, p) in the form of the series 

D (a, IL) = &‘a, (~1) (1.16) 
” 

where a,,(u) are polynanials in u with constant coefficients: 

a, (u) = byuKV + bvlue’+l + . * . (1.17) 

and cy represents the smallest exponent of the u in the polynomial Q,,(U). 

We consider each column of the characteristic determinant Db, p ) as 
of two columns. The first colunn has for its el 

:*;r) (0) - 
T:~;~;E members 

“,,g( 1 + u), and the second has members p’x,,g 

Then, any member ~“~(u) of the series (1.16) is equal to the sm of 
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the determinants of n-th order, in each of which should be entered Y 

second coluans and (n - v) first columuz, where the number of the deter- 

minants is equal to the rum&r Cs” consisting of n elements of y. The 

sum of the determinants we denote by a symbol 
x 

IL% (4 = 2 (4, X42,' (1.18) 
1 

where the symbol in the bracket after the sumnation sign indicates how 

many second colutms will be contained in each of the summd detenainants. 

In order to examine the nonexplicit functions Mu, cc) = 0 in the 

nei&borhood of the critical point P = 0, u = 0, we apply the Newton 
polygonal method, frcm which we determine satisfactorily the smallest 

exponent of the power cy for u in the polynomial Q,,(O). We beKin with the 

polynomial a,(u) in which only the constant factor differs from the ex- 

pression a% 

k 

(0) . ..E,b). Since Ei(0) f 0, i = 1, . . . . n, then, among 

members of t e series (1.16) not containing cc, the smallest exponent in 

the power of o is equal to k. 

Further, we determine the smallest possible exponent v1 for p in the 

members of the series not containinK u. Evidently, the exponent u1 > m. 

In fact, for v1 < I each determinant of the n-th order muld contain the 

minor of the matrix (1.13) which has an order meater than (n - n). How- 
ever, as follows from equation (1.14), in the greatest conzaon divisor of 

such minor will enter o as one of the factors, with a power equal or 

greater than unity. We assume that v1 takes the smallest possible value 
V - a; then for the construction of Newton’s polygon, it will be suffi- 
cient to determine the lower exponents of the polynomials a,,(o) for 
Y= 1, . ..) m- l. 

For v = a - 1, in each determinant from the sun (1.181, the minors of 
the matrix (1.13) of order n - I + 1 will enter. The greatest comnon 
divisor of those minors, as can be seen from (1.14), is equal to the 

derivative of the coefficient of u which does not reduce to zero for 

(I = 0. However, the smallest possible power of o in polynomial a._ (u) 
is c r_l > 1. Thus, it is easy to show that for any polynomial as_i (I) t for 

i < el the smallest possible power for u is c m_i > i. 

To pass to the general case, we assume that the exponent v = m - 
where 

Vh 

7 
is determined accordirqr to the expression (1.151, and h and y 

take va ues: h= 1, . . . . eye Y = 1, . . . , q. l’he orders of the minors of 

the matrix (1.13) contained in each of the determinants from the sun 

(1.18) now will be changed from n -m+ 5 
+ 1 ton- m+Ky+ ey. J3y in- 

creasing the order of the minor to unity, the domain becanes e > h > 1 
as follows from equation (1.14); the greatest camaon divisors gf the 

minor acquire the factor aYEi where E,(O) f 0. However, the last 
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member of the polynomial ai (u) with the index 

to the power 

i=m- 5 - h contains u 

~m--xy-h>~ (12, r)= el+2e2+. . .+(p--1) e,-,+ yh (h--l ,... ey, y=i ,..., q) 

If the last member does not vanish in any of the polynomials U,,(U), 

then the function Z&v, g) is equal to 

D(% PI v .k -+ b&A” + 2 r) bm_K~_*lLm-Wy-*ue(h,u) + H (1.19) 
h, Y 

where H is the set of members not helon&~ to the construction of the 

Newton polygon. 

Ihe Newton polygon for the functions Ho, cc) is represented in FiR. 1. 

Through the points N(O, k) and Ni (n, 0)) lying on the coordinate sxes a 

dotted line NN1 is drawn. 

cy- m--xy 
Fig. 1. 

Every member of the series (1.19) represents a point, whose abscissa 
is equal to the exponent of cc, and whose ordinate is equal to the ex- 

ponent of u. Newton’s polygon consists of the q segments: N,N,, . . . 

NyNr.1 l ** NdY* 

As it is known, to each segment of the polygon correspond as mauy 

solutions o(p), which convert to zero towther with CL, as the difference 
of the ordinates of the end points of the seqent. Further, we assume 
that if the coefficients of the first member of the series correspondi.?% 

to each semnt are all different, then the fractional power of the arm- 
ment fran which the expansion is ma& for each seganent is equal to the 
tangent o(p) of the route angle with respect to the vertical. 

From Fig. 1 it follows that the tanpzmt of the angle of the semnt 

N&+lwith respect to the vertical plane is equal to l/y. Then, the 
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function o(p), in the neighborhood of the point o = cc = 0, is expanded 
in powers of Ir (segment ff,N*), pl" tsemnt N&j .., pi/g fsemnt 
N,jV 1. The number of expansions correspondinff to the semnt Nfl +1 is 
equal to yey and, in meral, the n&r of expansions for the unction r 

o&cc) in the neighborhood of zero is equal to k, as it should be. 

From the construction of IS&ton's polygon for the function Dk, ~1, 
we conclude that the last member of any polynomial e(o) does not vanish. 
However, the Newton polygon for the function D(o, c) remains, as shown 
in Fig. 1, provided the coefficient of the last members, which correspond 
to the points Nit . . . . Nq of the polyp, do not convert to zero, i.e. 
the followinn inequality holds for q 

b m--xy s” 0 (y= 1, * * ', Qh (1.20) 

where K,, is defined by (1.15). Another form of the conditions (1.20) will 
be obtained below. Thus, we arrive at the following proposition. 

let us assume that for the ~asiha~ic system 

(1-l) 

the following hold: 

the 
(1) The fundsmental equation !a*~- 8,~h 1 = 0 has amona its roots, 
zero root, A,, and the pure imaginary roots Xa = 2 2npai/o where 

pa is an integer (U = 1, . . . . I*), o is a period of the function f,,g(t,cc), 
and the sum of the multiplicity of the roots A,, ha is equal to k. 

(2) Elementary divisors of matrix II at 
roots A,, Aa are not all simple, and the a 

- SgX\( corresponding to the 
ighest power of these divisors 

is equal to 9. 

'&en, in order that k characteristic roots p(p) of the system (1.11, 
for which p(O) = 1, be expandable in a series of the quantities p, pi", 
. ..) PI/Q, the followinn sufficient conditions must be satisfied: 

(a) the first approximation for the rp of the roots, pi(~) = 1+ 
aipi'y + . . . . developed in powers of cl1 y, is different for every y; 

(4) q satisfy inequality (1.20). 

In meral, the nunber k of the roots p&l developed in series of 
powers of @"Y is equal to ye where e,, is the sun of the members of the 
elementary divisors A", (x - K:P' of the power y. 

If the conditions (al and (b) are satisfied, we will have the non- 
degenerate case. 
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Fig. 2. 

Remark i. From the assumption above, it follows that if the roots 

A,, Aa have only simple elementary divisors (y = 1). and & characteristic 
roots for which p(O) = 1 differ little from each other in the first 

approxlaat ion. and the coefficient bm # 0, the those characteristic roots 

are analytic functions in the small parameter p. This property was indl- 
cated by Shumanov. In this case, the polygon of Newton is represented by 
the line EUN, IFig. 2). 

I I P_ 

P’;’ l P, P,’ ’ 

Fig. 3. 

Remark 2. If one of the conditions (1.20) is not satisfied, and if 
for any fixed y the coefficient bi, at i = a - K,,, Is equal to zero, but 

the coefficients bi_l and bi+l at a - 5 - 1 and at I - K,, + 1 are diffe- 
rent from zero, then in addition to the expansion of the characteristic 
roots in the nondegenerate case, in powers of IA. /L l/2 , . . . , ccl’? 2Y + 1. 
the roots must be expanded in powers of p2/(2y + 1) (Fig, 3). 

So far, we have considered the expansion of the characteristic roots 

with respect to fractional powers of the small paremeter in the case of 
resonance. If, among the critical roots of the fundamental equation (1.31, 
there exist pure ima+ary roots A = z 8, XII = + (2npU/o + /3)i, u = 1, 
. . . . r, where p is a real number which is not zero and also is not a 
multiple of ~A/o, then, instead of applying equation (1.11, we use the 
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substitution a = p - e its@; then, it is easy to show that the results ob- 

tained are valid in the so-called case of nonresonance. 

2. For the practical canputation of the characteristic exponent of 

quasihaxmonic system (1.1) Artm’ev has applied the substitution 

where a is the required characteristic exponent, and y,(t) is a periodic 
function of period w. Here we assume that the fundanental equation (1.3) 

has neither multiple roots nor roots differiw from each other by the 

quantity 2 npui/o (p is an integer). 

Shumanov has considered more general cases, assunina that amow the 

roots of the equation (1.3) there can exist roots which are either 

multiples of each other or which differ from each other by the quantity 

f 2npui/w; the multiplicity of the roots was assumd to be equal to the 
nmber of the groups of the solutions of the system (1.2) corresponding 

to these roots. 

We try to remove this last restriction by using the substitution (2.11, 

and we consider the case when the critical roots of the fundamental equa- 

tion (1.3) have elementary divisors, which are not all zero. The method 

of determination of the characteristic exponent developed below is based 

on the work of Malkin [ 2 1. 

Furthermore, we assume that to all critical roots (1.4) of the funda- 

mental equation (1.3) for which the SIBII of the multiplicity is equal to 
k, there correspond I groups of the solutions; and, in general, the 
number of elementary divisors U, (A - x~P’(II = 1, . . . . r-1 with the power 

y is equal to ey(y = 1, . . . . 9). 

The homogeneous system of differential equations (1.2) has I and only 

m periodic solutions of period o, which we denote by 4 i, where i = 1, 
. ..) a. We assune that to the periodic solutions c$,~, d 4 for 
which e, > i > 1, there corresponds a set of simple eleaZt&‘di~I~ors 
A, X-i and that the periodic solutions 4 

oond to “the set of the elementarv divisors t#“l+t& 
4 

ic&rd*&&? 
corres- 

9, (h- As)*. In general, the periodic solutions, qSli, for’which the 

index i takes a value K,,~’ > i > K,,! $ere ~y~s~~~~yb~f(~~S~~~~s- 

pond to the set of the e ementary dlvlsors 

Except for m periodic solutions c$*~, there correspond to the critical 
roots A,, A,,, k - I independent particular solutions of the system (1.2) 
of the following type: 

& P,i + & ‘p,i(‘)+ * . * +Cp8i(y-1) for x~+~> i >xu 
(2.2) . . . . . . . . . . . . . . . . . . . . 

tqJ + ‘p .(I) I (y=2,...,d 
St 81 
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wham the functions $,i(P) are periodic of period 0, satisfying recursive 
relations 

edP’ 
dt= QPpi(P) - (P.~(~-‘), xy+l> i > xy (P= i,..., y- 1) (2.3) 

B-1 

‘Ihe simplest method for detemination of the solutions (2.2) was 
given by Cktaev 14 1. 

Denote the periodic solutions of the system 

(2.4) 

con+~~te to (1.2) through I++ ., where i = 1, . . . . II. As in the previous 
case, we assum that such pe&dic solutions IJ+,~, for which tk index i 
is defined in the rauge K,,+~ > i > 
mentary divisors A”, (x + Aa)” 

5, correspond to tk set of the ele- 
in porrers of y of the matrix 11-a 

SgAll . Except for m periodic solution $,i, there correspond to S!! 
- 

e 
critical roots A,, Aa, k - I independent particular solutions of the 
system (2.4) of the sane type as in (2.2), i.e. the solutions 

. . . . . . . . . . . . . ...*..... for xy+i 2 i > xy 

t*ri + (b(l) 

where the functions $,i(P) are periodic with period o, satisfying tk 
recursive relation 

; i aB,~Bi(P) + Ip-1’ = 0 y$) (p = 1,. . . , y - 1) (2.5) 
P-1 

‘Ihe existence conditions of the periodic solutions of the nonhano- 

geneous system of equations 

(2.6) 

in the case of resonance, when all the functions f,(t) are periodic with 
period o, as known, can k written 12 1 in the form: 

On 

b -I fs+sj dt = 0 (2.7) 
0 s=1 

From the relation (2.3) it follows that the functions 4,i(p) are the 
periodic solutions of the nonhomogeneous system (2.6) for which f (t) = 
- + .(P-I). Further, because of relation (2.7), we obtain that in*the 
ix&&al for which 

5 
+l>i> 

satisfied. 
K,, the orthogonality conditions must k 
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hkmover, for p = y in the interval of i, at least one of the integrals 
is equal to zero, i.e. 

@n 
@--1) - 

sr, 
q,I(Y-')dr)6jdt#f (i=I,...,m; y"i,...,q) (2.9) 

06-l. 

In particular, for say i < c1 one of the sums 

(2.10) 

Similarly, fraa relations (2.5) and (2.71, mz obtain that for any 
fixed j in the interval %+1 > j > K,,, 

a h sr, t&@-f)qsi dt = w 2 +6j(p-‘)~,i = 0 fp = 1, . . . , y - i) (2.11) 

0 s-1 s-1 

However, at least one of the suns is different from zero: 

6-l - 

(i=1, . . ..m. y=&...,q) 

Using the property of the solutions of the conjqvate 
and (2.4) it is easily shown that 

equations (1.2) 

r-1 6=X 

In addition, if we have the form (2.111, we found that for any fixed 
value j frcnn the interval K,,+~ > j > 5, the conditions of orthoffmnality 
are satisfied, namely, 

Aji (2.12) 
6-l r-1 

From equation (2.8) and equatian (2.12) it follows thatAji= 0, if 
at least oue of two indices i or j is greater than cl; A..(' = 0 if one 
of the two indices is greater than el + e2; in geu ral A . . 3 “(Y-2) = 0, if 
i, j < K,,. In addition, it is evident that Aji 
and both of the functions +6i (Y-2) 

(F2f r 0,"if i, j < “v_ 
snd $&-2) 

1' 
are identically zero. 

Ibus, the quantities Aji(YM2) can differ from zero for only those 
values of the index i, j, which satisfy the inequality K,, > i, j > 5,. 

Having estsblished the above properties of the quantities Aji(Ys2), 
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we.pass to the determination of the characteristic exponents of the quasi- 

harmonic system (1.1). Substituting equation (2.1) into equation (1.1) we 

have the following system of equations: 

In the nondegenerate cases, as has been shown, the characteristic ex- 

ponents a will be expanded in the powers of cc 1/y, where y = 1, l **, Q, 
and for any y the number of the expansions in the p l/Y is equal to yey. 

Therefore the characteristic exponent a and the periodic functions y, can 

be written in the form of the series 

a = a,plIY+ U#.21y+..., y, = Q) + Pi tyy,(‘+.$~ yys(2) +. . . (2.14) 

We begin with the determination of those characteristic exponents, 

which can be expanded in powers of p. Substituting the series 

a=p.al+p2a2+..., ys = y,(O) + pyp + p2ye’2’ + . . . 

into (2.13), we obtain the systems of differential equations 

(2.15) 

dy,W 
n 

dt= aspy p(l) + 2 fsp(‘)yp(0) - alyp 
p=1 @=I 

(2.16) 

(2.17) 

7=li dy,W 
u*pyp + 5 (f,p(‘)yp(‘) + fs+2)Yp(0)) - %Y.9(‘)- a2Y~(~' etc. 

p=1 p=1 

'Ihe system obtained, (2.16), h as a family of periodic solutions 

y,(O) = MlOqJSl + *** + M?n"cpS, (2.19) 

where Mio is an arbitrary constant. From the conditions of the periodicity 

of the functions .y, (1) , we obtain 

Pj = (Bjl - O,lAjl)Ml"+ me* + (Bj~-CllAj~)M~" = 0 
(j =l,...,m) (2.20) 

where 

Bji = S C 2 fsp(‘)?pi+sj dt, Aji= S i vsi&j dt (2.21) 
0 8, b 0 s-1 

As shown, Aji= 0 for i, j > ei. Therefore, the system of equations 
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(2.20) can be written in the form 

(BjI - %Ajl)Mlo + l ** + ~~j~,-u~~j~,)~~~ + Bj,e&$ftt,+,” + *** + 

+ BjmMm’ = 0 (i = I,..., ed 

BjlM1° + . . . + Bj,,,ilf,” = 0 (i = el + I,..., m) (2.22) 

and consequently, the coefficient aI is the root of the algebraic equa- 

tion 

A1 = 

&I - al& . . . B1, 
1 

- alAl, 
). 

Bl,,1+1 . . . Bl, 

. . . . . . . . . . . . * . ..* . . . . 

B 
Cl1 - deI1 . . . Be,rl - alAe,B, B B c,.el+l”* e,m 

B c*+f,l . . * . . . * . . . . . * B e&+1, m 
. . . ..f‘........... *** 

B ml. . . . . . . . . * . . . . . 
* 4nnI 

= 0 (2.23) 

which is of order equal to el. ‘Ibe equations which are obtained will not 

be satisfied identically if the last s - eI rows (and columns) of the 

determinat 4, which do not contain a1, are linearly independent. lhus, 

we have obtained el existence conditions for the expansion of the 

characteristic exponent in powers of it, in a form different from equation 
(1.20). 

In nondemnerate cases the condition of linear independence of the 

I- e 1 last rows (and colunns) of the determinant 4 is satisfied. More- 

over, all the eI roots of a1 are simple. Let one of these roots be ai. 
Then, among the minors of the n - 1 order determinant 4, at least one 

minor is not equal to zero, and from the system of the equations (2.22) 

the quantities Hi0 can be found, from which one, say MI”, can be arbit- 
rary. The quantities MIo, l **I M O, 

system (2.22), and for them 
m-1 aI are simple solutions of the 

a Pl,..., P,) 

a (Ml*,..., M,_*“‘ al) #O (2.24) 

For a nonzero determinant (2.24) we can formally construct the series 

(2.19, with as many members as we desire. 

In fact, the periodic solution for y#( ‘) is of the form 

y,(l) = M~(l)~~~ + . . . + Mm--lfl)ywn-, + M~O~~~ f yP)* (2.25) 

where M,(l), . .., M,, 1(1) are arbitrary constants, and y (I) ’ 
particular solution if the periodic system (2.17). Subst!tutiil ?19) 
and (2.25) into (2.x8), se obtain fran the conditions of the periodicity 
of the functions y*(Z) 
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i-1 i-el+i 

- a2 i AjiMi’+ Cj= 0 (i= ‘****Pel) 
i-l 

(2.26) 

B jlMl(‘t + a s e + Bj,m_1Mm_l(l) + Cj = 0 (i = el + I,..., m) 

where C. is an arbitrary constTt. From the s stem of equations (2.26) 

we can ind the quantities Ml #* M (lr in such a way that the 
determinant of this system coinc~dk~‘kit~~konzero determinant (2.24). 

Thus, successively one can determine all coefficients o of 
the series (2.15). Assuming as al 

succession, we obtain el 

all el roots of the equa~~o~‘i2:23) in 

characteristic exponents of the system (1.1) 

which can be expressed in integer powers of cc. 

We pass to the determination of the;t2characteristic exponents which 

can be expanded in integer powers of cc . ‘l’he nunber of such exponents 

is equal to 2e,. 

Substituting the series 

a = IL% + pa, + Ct% + ,.. . , y, = ye0 + $k~,(l) + pyp) + . . . 

into (2.13) we obtain the system of equations 

(2.27) 

5-l P-1 
(2.28) 

dye@) n n 

yg- = 2 %PY~(~) + 2 jsp(‘) Yp(O)- %Ys(~) - a2!/8(‘) etc. 
P-l O-1 

Assming for the fundamental solutioy1i2.10), we obtain the conditions 

of the periodicity for the functions y, : 

Ul (Ml”A jl + a e e + AfmOAjm) = 0 (i = 1, . . . . nt) (2.29) 

Because A.. = 0 for i, .j > el, the last m - e1 conditions (2.29) 
identically %isfied, and the first e1 

are 

form 
conditions, for a1 f 0, take the 

Al1O.A jl + . . . + ble,Aje, = 0 (i - ‘9..‘1 el) (2.30) 

let us show that the determinant 1 A. . 1 of the system (2.30) differs 
from zero. In fact, in the opposite ca’si the equation (2.30) will adnit 
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at least one of the solutions c 
b’ c2’ “” 

cri different from the trivial 

solution c1 = c2 = . . . = ccl = . ‘Ihen, assigning to the i a fixed value 

p, equal to one of the nunbers from the series 1, . . . . el, we replace the 

solution of the system (1.2) by the solution $_* = ~~4,~ + .., + cci$Sei, 

leaving other solution +li for i f p unchanged. For the new system of the 

fundamental functions $S1, . . . . d 
A jp* is given by 

r,p-1’ tP+,*, +arpC1. . . . , 9,. the quantity 

0 n 

A. *= 
3P (Ptp*$,j dt = ClAjl + . a a + ce,Aj,, = 0 

(i = I,..., e1) 

In addition, A. l = 0 for j > 
contrary to thCPconditions 

e thenA.*=...=A *=O, whichis 

(2.1 b’ 1; this i:oves that t e determinant tp 

the equation (2.30) can have only the trivial solution 

Therefore, 

Y,” = Mc~+A~e,+l + . . . + M,“cp,, (2.31) 

dt = i ~,y~(‘) - al i Mioqsi 
dy,W 

p-1. i-s,+1 

(2.32) 

where the constants Mc +lo, . ..) Mm0 remain undetermined. ‘Ibe family of 

periodic solutions of &he system (2.32) is Riven by (2.33) 

y,(l) = MIWprl + . . . + MnPcpm + al (M;,+, ‘pw,+P + . . - + Mm”~m(‘)) 

where I!!~(‘), . . . . bfm(‘) are new arbitrary constants. 

Because Aj i = 0 for i, j < ei and A. ;(I) = 0 for 
fJ 

i, j < e1 + e2, the 

conditions of the periodicity of the unctions N, (2) , with no further 

transformation, are obtained in the following form: 

Pj= f$ (Bji- a~2Aji(‘)) Mi” + $J BjiMi” = 0 (i= el+ I,..., el+e2) 
i-e,+1 i-w,+1 

(2.34) 

Pj = Bjel+lMcl+~’ + e.. + Bj, Mm” = 0 (i = xs+ I,..., m) 

J’j = Bj,el+lMel+lo + se s + Bj,Mm’ - ~1 (Aj,MI(‘) + me s + Aj,,Mel(l)) 
(j = I,..., el) (2.35) 

The constants Pe +1, M io), 
1 

l **, ” M,(I), . . . . Mel(l) in equations (2.34) 
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and (2.35) are not 

the detexminant of 

of the equation 

all 

the 

zero, only for such values of aI, for which the 
system (2.34) becomes zero, i.e. they are roots 

B vt-l.~,+l- u12A!f:l,e,+l . . . %t-~~, - “‘aAk;:l ,x* B sl+l,q+l **- B e,-l-1.m (2.36) 
. . . . . . . . . . . . . . . . . . . . . . . . * . . * * *,.. 

B XI, e,+1 - 
,,SA(‘) 

x,. e,+1 *** Bx ,x,- u&~~~),,WB,,,~+~ .., B, m = 0 
I 

B )$+l,c,+l . . . . . . . . . . . . . . . * . . . , . . . . B x,+l,m 

B m,c,+l . . . . . . . . . . . . . . . . . , . . . . . . . . . B mm 

Indeed, if the determinant L$, f 0, then from the h 
of equation (2.34) it follows, that M 

a f 0, then from the system (2.35) wz&‘the 

obtain that MI(‘) = . . . = M 
c1 

(I) = 0. 

From equation (2.36) all 2e, characteristic exponents can be determined 

to the first approximation, if the last m - K~ rows (columns) of the 

determinant 4 are linearly independent. If, in addition, all roots are 

simple, then assuming: aI as one of these roots, we find the quantities 

M Cl+1 O, . . . , Mm’, fran which, say Ma’, can be arbitrarily chosen; whereby 

(2.37) 

The constants M, +1o, . . . , Ml”, obtained f cm 
lf (2.35), uniquely d&ermine M,(I), . . . . Me11 . 

the system of equations 

Exactly as in the case for y = 1, it is easy to show that for a nonzero 

determinant of (2.37) the series (2.27) can be formally constructed with 

an arbitrary number of terms. 

Consider the case y = 3. Substituting the series 

a = p’k, + ~%zz + . . . , y, = y,(O) + p’Ly,W + p’hj,@) + . . . 

into (2.13), we obtain 

(2.38) 

dy,(O) 
dt = 2 uepypq\ q = 2 ae9yp - a1yP 

P B 
dy,W 

dt- = 2 ue3ys(2) - alye - a,yp 

(3) + 2 f,p(1)ypw-~ly,(2) _ a,y,(l) - n,y,(o) etc. 

P P 

From the first two systems of equations we find that for the functions 
Y (0) 

S and y/) the equations (2.31) and (2.33) remain valid. ‘Ihe condition 



&I quariharronic ryrtcmr 737 

of the periodicity of the function y, (2) is Riven by 

m 

Ui 2 AjiMi(') + ala i il!fico)Aj*(') + 

i-l i-81+1 

+ a2 2 Mi"Aji=O (i = I,..., m) 
i-C?&+1 

Thelastr-Kg conditions are identically satisfied, but the first 

K3 of these can be written as 

~1 (AjlMl(‘) + . . . + Aje,Me,@)) = 0, i = f,..., el (2.39) 

al2 (Aj,,+l”‘Me,-+-I” + *. . + Ajx,(')Mx,') = 0, 1 '=el+j,..., x3 (2.40) 

It is not difficult to show that the determinant of the system of 
equations (2.40), (Aji(l) 1, differs from zero. 'lherefore, 

M &+I0 = . . . = o=MIW= . . . &k&,(1)=0 

and the functions y, (01, will be equal to 

m 

y,(l) = i Mi(‘$*i + al 2 Mi”vsi(‘) 
i-x,+1 i-e,+1 i-r,+1 

m m 

93 
(a)= x ~~(2)9,~ + a, i Mitl)t+3i(L) + ala i MiO~sr(~) + ~2 C Mi"%i(') 

i-l i-e,+1 i-x.+1 x,+1 

Transforming the conditions of the periodicity of the function we ob- 
tain 

m 6. 

2 BjiMi” - Ul 

i-%+1 

.zMi@‘Aji = 0 (i = I,..., el) 

5 Bji&li" -Q 5 ;M:l0a,io, = 0 

(2.41) 

(i=el+j,..., ~3) 

i-w,+1 i-4+1 

5 BjiMi” - al3 i J,fiOAjiW = 0 (j =x3+ I,..., x3 

i-x.+-l i-x.+1 

5 BjiMi” = 0 (j = Y( + I,..., nr) 
i-*+1 

(2.42) 

From the system of equations (2.42) it follows, that the constants 
Mio differ from zero only for values of aI, which satisfy the equation 

B (2) 3 (2) 
%Sl,%fl -a13Ax.+l.x.+l %,+1.x,- 

B 
a1 Ax,+l.x, 

B 
~,Sl.X,-!-1"' 

B x,+1.m 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A3 = uWb+l 
_Q_4(') 

XI. x,+1 
B 

x,.*, -d4f,~, B,,.x,il . . . B,,, Il1 
= 0 (2.43) 

B x,+l,x*+l . . . . . . . . . . . . . . . . . . . . . . B %fl.,)l 
B m,w,+l......'.....'........... .B tvm 
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where K 

colwms j 

= el + e2 and K~ = el 

of the determinant A, 

of equation (2.43) are simple: 

Y.A. Kurhul’ 

+ e2 + e3. If the last II - K,, rows (and 
are linearly independent and all roots 

then the series (2.38) can be constructed 
with an arbitrary number of terms. For y = 3 we obtain for the first 

terms ai of the series (2.141, the same structure as for y = 1, 2, 3. 

‘l’he proof of this statement will not be given. 

Until now we have considered the determination of the characteristic 
exponents of the system (1.1) in the case of resonance. If among the 

roots of the fundamental equation (1.3) there occur puke imatinary roots 

of the type A = + i 8, A, = t (2 np,/o + /3)i, where /3 is neither zero nor 
a multiple of the quantity 2n/w, then the characteristic exponents, 

correspondin to these roots, can be written in the form of the series 

a = iP + pls,czl + p2jya2 + . . . , as described previously, without essential 
chanue. 

Remark. In the above study we have used the conditions of periodicity 
(2.7). in order to obtain certain general dependencies. Practically, we 
can write down the existence conditions for the periodic solutions with- 

out recourse to the canonical form or considerations of conjugate systems 
(which, will not, be done here). 

3. The results obtained will be of use in the investigation of the 

stability of the periodic solutions of the quasilinear system of the 

type. 

(3.1) 

where ad are constant coefficients and the functions f, and Fd are con- 
tinuous and periodic with respect time t, with period GA In addition, 

Fa are analytic in the variables zl, . ..) z,. We assume that the corres- 

ponding matrix 11 aSo - Sds(( has the sane structure as an analogous 
matrix for the quasiharmonic system (1.11, shown above. We restrict our- 

selves to the case of resonance, i.e. we assume that amona the roots of 

the fundamental equation (1.3) there exist zero roots A, = 0 and the 

roots of the form A,, = + 2rrpUi/a (pu is an integer), to which no simple 
elementary divisors correspond. The real parts of all other roots of 

equation (1.3) are negative. 

Note that the quasilinear systems (3.11, whose pure imaginary roots 
A,, A,, of the fundamental equation have elementary divisors of the second 
degree (q = 2), occur in many important practical problems, when the 
frequency of the perturbed forces is considerably greater than the 
natural’ frequencies of the system. Such problem arise, in particular, 
in studying the dynamics of high speed machinery and mechanisms. 



is 

to 

obtain 

Let the system (3.1) have the periodic solution zI = $,(t, p), which 

analytic with respect to a small parameter B, and whose stability is 
be studied. Using the variational equations for these solutions, we 

i.e. a 

f,, (cr, 0 = 
aF‘(t, G I4 

azB (3.2) 

quasihamonic system considered above. 
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In nondegenerate cases the following propositions are valid. 

(1) If the roots A,, AU, have only sinple elementary divisors, then 

for the asynpt?tic stability of the periodic solution, it is sufficient 

that in all roots of equation (2.23) the real part has to be nep;ative. 

In that case the problem of stability is solved by usiq the Routh-Jkktz 

criterion. 

(2) If the critical roots A,, AU, have elementary divisors of the 

first and second degree, then for the stability of the periodic solution 

z = q5 k, t 1 it is necessary that the roots of the equation (2.23) have 

nZ posttive real parts and the square roots of the equation (2.36) are 

real negatives. 

The first conditim is obvious; the necessity of the second condition 

follows from the fact that in equation (2.36) al occurs only in even 

powers. 

Both conditions are necessary, but they are not sufficient for stabil- 

ity of periodic solution for q = 2. 

(3) If the critical roots A,, AU, have elementary divisors of the 

third degree, then the periodic solution zI = +,(t, ~1 is unstable. 

In fact, let aI3 = u; then for any value of u1 either complex or real, 
which satisfies equation (2.431, the coefficient a1 will take on at least 

one value, whose real part is positive. 
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