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In this paper we consider the quasiharmonic equation (1.1) in which

the coefficients are analytically dependent on a small parameter u

and when g = 0, it converts into a system with constant coefficients.
We assume that among the roots of the fundamental equation | a g - 848A|
= 0 there exist pure imaginary roots and zero roots, which are
multiples of one another and differ from each other by a quantity of
the form 27pi/ @ (w is the period of the coefficients of the quasi-
harmonic systems; p is an integer) and such that not all of the ele-
mentary divisors corresponding to these roots are simple.

In this article attention is mainly focused on those character-
istics which arise in the examination of the quasiharmonic system in
connection with the existence of the nonsimple elementary divisor of
the matrix || a8~ 8:3"" .

Using the Newton polygonal method it is possible to establish the
dependence between the structure of the matrix || 3,8~ 8“3A||and the
quantities ul/y with respect to the integral powers into which
characteristic roots (and exponents) are developed.

For the practical computation of the characteristic exponents,
using substitution (2.1), algebraic equations are derived from which
one determines the characteristic exponents in first approximation in
the presence of elementary divisors of arbitrary power of the matrix

Il ag - 8,gA10.

The results obtained are applied to the examination of the stability
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of periodic solutions of quasilinear systems with many degrees of
freedoms and in those special cases when the fundamental equation of
the generating systems has pure imaginary and zero roots, the
multiples of which are not equal to the number of groups of solutions
corresponding to them.

1. let us consider a quasiharmonic system
dz n
T = D) [ass + wfeg (¢, ©)] 25 1.1

B=1

where the functions f&B (t,p ) are periodic with respect to t with period
®, and analytic with respect to the small parameter u

fop (s 1) = fos® + pf8 + o+
If p = 0 then the system (1.1) reduces to

dz. ©® n
—;t —_ 2 g5 T (a,3 = const) (1.2)
=1

Let us assume that among the roots of the fundamental equation
{@p — 8s6A| = O Bu=1, 3,3 =0 for s=p) 1.3)

of the system (1.2) there exist roots with zero real parts; the roots of
such type we will call critical. We assume that among the critical roots
one encounters both multiple roots and roots which differ from each other
by quantities of the form 2npui,/m where p, is an integer, the number of
the groups of solutions of system (1.2) corresponding to the critical
roots which are not equal in their multiplicity.

We first consider the case of resonance where among the critical roots
A of the fundamental equation (1.3) there exist the zero and pure imagin-
ary roots

N=0,  hu=HTpi  w@=1...n (1.4)

let q, be the highest power of the elementary divisors of the matrix
1 a.g - 8ﬂ3A||corresponding to the zero root. Let us denote by €oy the
number of elementary divisors AY, wherey = 1, ..., a (1f there is no
elementary divisor from that series for any value of y then e, = 0). The
multiplicity of the zero root k; and the number of the groups solutions
m which corresponds to them are equal to

Qe

Qe
ko = 21 Yoy my = 2 €or (1.9)
v=1 y=1
Similarly, denote by g, the highest power of elementary divisors,

corresponding to each root of the pair Au =1 anui/h) and €, 8s the
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number of elementary divisors A - A ) withy =1, ..., g,

The multiplicity kn of the root A and the number of the groups of
solutions L corresponding to them are equal to

dy du
ky = 2 Yeuy, my = 2 Cuy (1.6)
=1 =1

Denote by z,,(t)...z, (t) the solution of the fundamental system (1.1),
defined by the initial conditions

Zj; (0, (.l.) =1, g5 (0, p.) =0 (s==1)
Looking for the solution in the form of series
o (£) = 650 (t) + 2 () + - - -

j(l)(t) satisfy initial conditions

z;;0(0) =1, z;Q0)=0 (s~
2o (0) = 8 (0) = ... =0 (s £=))

in which the functions x,

we obtain

t n I =
, I
200 = Daw ¢ =9 X0 @ (Xi® = J 3 fupzp;¢)
0 g=1 i=1p=1
Then, in the limit of the first approximation, the characteristic
equation of the system will be written as

D (p, p) = 245" (@) + pzsg” (@) — 3up | =0 (1.7)
Let p, be the root of equation (1.7) for p = 0
D (p, 0) = 2,5 (@) — 8ygpo | = 0 (.8)

To every root )‘0' hu of the fundemental equation (1.3) from the series
(1.4), there corresponds a root of equation (1.8) equal to unity; con-
sequently, the multiplicity of the root p;, = 1 of the equation (1.8) is
equal to k = k; + 2k1+ - +2kr and the point # = 0, p = 1 is critical.

As it is known, for sufficiently small g, the equation (1.7) has k
roots p(u) for which p(0) = 1, and these roots will be expanded into
series of integral powers of the quantity ul/" where 1< v < k.

let us denote by ¢ the highest power of the elementary divisors,
corresponding to the roots (1.4), i,e. the largest of the numbers qgr 91»
«e+y q,. We derive conditions for which all k roots p(u), converting for
= 0 into unity, will be expanded only in integral power of the quanti-
ties g, #¥/2, ..., u1/2, Note that to every elementary divisor (A — ALY
of the matrix || a B ) 'BA || there corresponds the elementary divisor
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b, - 1)Y of the matrix || x (0) (g) - S‘Bpo {| and therefore the number
of the elementary divisors éo - 1) is equal to
ey = €y + 261y +. . .+ 2eny r=1...,9 (1.9)
The multiplicity k& of the root py of the characteristic equation (1.8)
and the number of groups of solutions corresponding to it are

q
k= D qen m= ) e (1.10)

Y=1

M=

]
-

Y

Let us introduce in place of p the variable ¢ equal to

c=p—1 (1.11)
The characteristic equation (1.7) changes into the form
D (o, 1) =1 %o (0) + 12" (@) — 335 (1 + ) | =0 (1-12)
From (1.9) and (1.10) follows, that the matrix
| Zog® (@) — 855 (1 + ) | (1.13)
through elementary transformations, can be reduced to the diagonal matrix
{Cyi... Ci... Cp} (1.14)
in which the diagonal members C; are equal to
Ci= Ei(g) fori=1,...,n—m
Ci=0 Ei(s) ftori=n—m+1,...,n—m+e
CimovEi(s) fori=nmbw 41 nmyn e, T

Cp = c9E, (o)
where E l-(a) are polynomials not reducing to zero for o = 0, and the
numbers x are equal to

xY=€1+62+---+eY_l (1.15)

Expanding the characteristic determinant (1.12), we represent the
function D{(o, p) in the form of the series

D (s, 1) = D, (a) (1.16)

where a,(0) are polynomials in o withvconstant coefficients:
ay (0) = bya™ + bya™ ™t 4. (1.17)
and ¢, represents the smallest exponent of the o in the polynomial ¢, (o).

1 4

We consider each column of the characteristic determinant D(o, p) as
a s?m of two columns. The first column has for its elemfnts the members
8 0) (@) - 8!3(1 + o), and the second has members #x.g 1) (o).

Then, any member 4”q,(0) of the series (1.16) is equal to the sum of
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the determinants of n-th order, in each of which should be entered v
second colums and (n — ») first colums, where the number of the deter-
minants is equal to the number Cn" consisting of n elements of v. The
sum of the determinants we denote by a symbol

wa (o) =J0) x=Cd (1.18)
1

where the symbol in the bracket after the summation sign indicates how
many second colums will be contained in each of the summed determinants.

In order to examine the nonexplicit functions D{o, p) = O in the
neighborhood of the critical point g = 0, ¢ = 0, we apply the Newton
polygonal method, from which we determine satisfactorily the smallest
exponent of the power €, for o in the polynomial av(a). We begin with the
polynomial a,(0) in which only the constant factor differs from the ex-
pression o*E, (¢)...E (o). Since E.(0) £ 0, i = 1, ..., n, then, among
members of the series (1.16) not containing g, the smallest exponent in
the power of o 1s equal to k.

Further, we determine the smallest possible exponent vy for p in the
members of the series not containing o. Evidently, the exponent v,>m
In fact, for v, < m each determinant of the n-th order would contain the
minor of the matrix (1.13) which has an order greater than (n — m). How-
ever, as follows from equation (1.14), in the greatest common divisor of
such minor will enter o as one of the factors, with a power equal or
greater than unity. We assume that v, takes the smallest possible value
v, = m; then for the construction of Newton's polygon, it will be suffi-
clent to determine the lower exponents of the polynomials av(a) for
v=1 ..., m- L

For v = m — 1, in each determinant from the sum (1.18), the minors of
the matrix (1.13) of order n — m + 1 will enter. The greatest common
divisor of those minors, as can be seen from (1.14), is equal to the
derivative of the coefficient of ¢ which does not reduce to zero for
o = 0. However, the smallest possible power of ¢ in polynomial a_ . (o)

- - . . .-
ise, > 1, Thus, it is easy to show that for any polynomial a._ita) for
i < e; the smallest possible power for o is € > Lo

To pass to the general case, we assume that the exponent v = m - x_,-h

where % is determined according to the expression (1.15), and h and ¥
take values: h=1, ..., e,, y =1, ..., q. The orders of the minors of
the matrix (1.13) contained in each of the determinants from the sum
(1.18) now will be changed fromn - m + +leton-m+ Ky + €. By in-
creasing the order of the minor to unity, the domain becomes e, > h > 1
as follows from equation (1.14); the greatest common divisors of the
minor acquire the factor oyEi(a) where E;(0) £ 0. However, the last
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member of the polynomial a,(v) with the index i = m - Ky, = h contains ¢
to the power

sm-—xy-h>e (h’ T): e1+2e2+' ¢ '+(T_1) eY—'1+ Th (h==1, .. .87, Y=1: ees @ )

If the last member does not vanish in any of the polynomials a,(0),
then the function Dlo, u) is equal to

D (s, p) = ok -t bynp™ - X} D bmoymnt™ YRR - H (1.19)
hy
where H is the set of members not belonging to the construction of the
Newton polygon.

The Newton polygon for the functions D{s, p) is represented in Fig. 1.
Through the points N(0, k) and N, (m, 0), lying on the coordinate axes a
dotted line NIV1 is drawn.

o
N(0.X)

py= m=Xy
Fig. 1.

Every member of the series (1.19) represents a point, whose abscissa
is equal to the exponent of u, and whose ordinate is equal to the ex-
ponent of 0. Newton's polygon consists of the g segments: N1N2'

NN, yee N

As it is known, to each segment of the polygon correspond as many
solutions o{u), which convert to zero together with g, as the difference
of the ordinates of the end points of the segment. Further, we assume
that if the coefficients of the first member of the series corresponding
to each segment are all different, then the fractional power of the argu-
ment from which the expansion is made for each segment is equal to the
tangent o{g) of the route angle with respect to the vertical.

From Fig. 1 it follows that the tangent of the angle of the segment
NyNy +1 With respect to the vertical plane is equal to 1/y. Then, the
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function o(y), in the neighborhood of the point 0 = u = 0, is expanded
in powers of u (segment N1N2), “1/2 (segment NZNB) ni/q {segment
N JV ). The number of expansions corresponding to the segment NYN +1 is
equal to ye, and, in general, the number of expansions for the function
o() in the neighborhood of zero is equal to k, as it should be.

From the construction of Newton’s polygon for the function Dlo, n),
we conclude that the last member of any polynomial av(a) does not vanish.
However, the Newton polygon for the function D(o, p) remains, as shown
in Fig. 1, provided the coefficient of the last members, which correspond
to the points Ni' ..., N of the polygon, do not convert to zero, i.e.
the following inequality holds for ¢

bm—x.,,% 0 (v=1,...,9» (1.20)

where x, is defined by (1.15). Another form of the conditions (1.20) will
be obtained below. Thus, we arrive at the following proposition.

Let us assume that for the quasiharmonic system

dz -
2= Dlas + wep (1, W)z (1.1)
B=1

the following hold:

(1) The fundamental equation |a g - § pA]| = 0 has among its roots,
%8B Y4B .
the zero root, A,, and the pure imaginary roots )\u =% 2n pux/m where
P, is an integer (u=1, ..., r), o is a period of the function f.B(t,u),
and the sum of the multiplicity of the roots A, A, is equal to k.

(2) Elementary divisors of matrix || ag- Ss All corresponding to the
roots A, Au are not all simple, and the ﬁighest power of these divisors
is equal to g.

Then, in order that k characteristic roots p(p) of the system (1.1),
for which p(0) = 1, be expandable in a series of the quantities p, ul’{z,
N ui/q, the following sufficient conditions must be satisfied:

(a) the first approximation for the group of the roots, p (u) = 1+
aiui/y + ..., developed in powers of ul’Y, is different for every y;

(k) g satisfy inequality (1.20),

In general, the number k of the roots p{(u) developed in series of
powers of ul’,y is equal to ye,, where is the sum of the members of the
elementary divisors AY, (A - Xu)y of the power y.

If the conditions (a) and (b) are satisfied, we will have the non-
degenerate case.
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Fig. 2.
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Remark 1. From the assumption above, it follows that if the roots
}‘0' )&. have only simple elementary divisors (y = 1), and k characteristic
roots for which p(0) = 1 differ little from each other in the first
approximation, and the coefficient b. £ 0, the those characteristic roots
are analytic functions in the small parameter g. This property was indi-
cated by Shumanov, In this case, the polygon of Newton is represented by
the line NN1 {FPig. 2).

VAL M
Fig. 3.

Remark 2. If one of the conditions (1.20) is not satisfied, and if
for any fixed y the coefficient b‘-. at i = n— , 1s equal to zero, but
the coefficients b, , and b, , at a -~ Ky = 1 and at = - Ky + 1 are diffe-
rent from zero, then in addition to the expansion of the characteristic
roots in the nondegenerate case, in powers of g, ul/z. oo ui/q, 2y + 1,
the roots must be expanded in powers of uz/(2y + 1) (Fig. 3).

So far, we have considered the expansion of the characteristic roots
with respect to fractional powers of the small parameter in the case of
resonance. If, among the critical roots of the fundamental equation (1.3),
there exist pure imaginary roots A = * i, A =% (2rrpu/m+ Bli, u=1,
ees, r, where 8 is a real number which is not zero and also is not a
multiple of 27/ w, then, instead of applying equation (1.1), we use the
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substitution 0 = p - eiB“’; then, 1t 1s easy to show that the results ob-
tained are valid in the so-called case of nonresonance.

2. For the practical computation of the characteristic exponent of
quasiharmonic system (1.1) Artm’ev has applied the substitution

z, = esty, (1) (2.1)

where a is the required characteristic exponent, and y (t) is a periodic
function of period w. Here we assume that the fundamental equation (1.3)
has neither multiple roots nor roots differing from each other by the
quantity 2ﬂpui/(o (p is an integer).

Shumanov has considered more general cases, assuming that among the
roots of the equation (1.3) there can exist roots which are either
multiples of each other or which differ from each other by the quantity

2rrp i/w; the multiplicity of the roots was assumed to be equal to the
number of the groups of the solutions of the system (1.2) corresponding
to these roots.

We try to remove this last restriction by using the substitution (2.1),
and we consider the case when the critical roots of the fundamental equa-
tion (1.3) have elementary divisors, which are not all zero. The method

of determination of the characteristic exponent developed below is based
on the work of Malkin [2].

Furthermore, we assume that to all critical roots (1.4) of the funda-
mental equation (1.3) for which the sum of the multiplicity is equal to
k, there correspond m groups of the solutions; and, in general, the
number of elementary divisors AY, (A - Au)y(u =1, ..., r) with the power
y is equal to ey(y =1, ..., q).

The homogeneous system of differential equations (1.2) has m and only
m periodic solutions of period w, which we denote by ¢ i where 1 = 1,
«ee, m. We assume that to the periodic solutions ¢'1, 520t qS", for
which e, > i > 1, there corresponds a set of simple elementary divisors
A, A=A o+ @nd that the periodic solutions b, y eoes ¢‘ e.+e, COTTES-
pond to the set of the elementary divisors of t e second powe
AZ, = )2 In general, the periodic solutions, ¢,;, for which the
1ndex i t.akes a value > i > , where is defined by (1.159), corres-
pond to the set of the e)iementary divisors ny A=A u)y of the power y.
Except for m periodic solutions ¢, ;s there correspond to the critical
roots )Lo o’ k -~ m independent partlcular solutions of the system (1.2)

of the following type:
tY‘l Y—2

¥ —! Psi + g)l .. -+9,, tr=1) for x ., =i >%,
.................... (Y=2,..., )

(2.2)
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where the functions qS' i(’) are periodic of period w, satisfying recursive
relations
n

de i(17) .
— = D e, P — 9,7, x> i>%  (p=1,...,y—1) (2.3)
g=1

The simplest method for determination of the solutions (2.2) was
given by Chetaev [4].

Denote the periodic solutions of the system

dx >

—=+ dagay =0 (2.4)

p=1
conjugate to (1.2) through Y,;» where i = 1, ..., a. As in the previous
case, we assume that such periodic solutions \lr. i for which the index ¢
i8s defined in the range Kyp1 > > Ky s correspond to the set of the ele-
mentary divisors AY, (A + A.) in powers of y of the matrix ||-a g~
o ‘BMI . Except for m periodic solution l/l‘ ;» there correspond to ge
critical roots )to, Au, k — m independent particular solutions of the
system (2.4) of the same type as in (2.2), i.e. the solutions
17-1

Y—2
r—! q"i + (Yf—' 2)1 q'li(l)'i‘. . q)ai(Y—l)

----------------

where the functions l/ln.(") are periodic with period @, satisfying the
recursive relation

WP < -

St Do 9TV =0  p=t,...,y—1) (25

8=1

The existence conditions of the periodic solutions of the nonhomo-
geneous system of equations

R BZ Guss -+ 1o (1) (2.6)
=1

in the case of resonance, when all the functions f ‘(t) are periodic with
period @, as known, can be written [2 ] in the form:

©on
|3 fubsde =0 2.7
0 s=1
From the relation (2.3) it follows that the functions ¢”.(P) are the
periodic solutions of the nonhomogeneous system (2.6) for which f (t) =
- ¢'i("'1). Further, because of relation (2.7), we obtain that in the
interval for which Kypr > i> Ky, the orthogonality conditions must be

satisfied.



On quasiharmonic systéms 731

. @ g » = -_
Aﬁ(p-n — S 2 ?.i(p-l)q;’ y dt == & 2 q:‘i(?"‘l)(p”, =0 (P .., 1) (2.8)
] )

f=1,..., ms
— —1 1 ’ ’

Moreover, for p = y in the interval of i, at least one of the integrals
is equal to zero, i.e.

@ n
AP = S N euTVGdE F£0 (=1, ,my=1,...,9) (2.9)

0 8m]

In particular, for any i < e, one of the sums

Aji= D 9,0 (2.10)

gm]

Similarly, from relations (2.5) and (2.7), we obtain that for any
fixed j in the interval Kyey > j> Ky

N n
S 2 P g dt = w 2 $, 7 Ve,,=0 (p=1,...,y—1 (2.11)

0 8l a=1
However, at least one of the sums is different from zero:

n
Zq»,j‘"f“”@,i%() i=1,...,my=1,...,9

8=]

Using the property of the solutions of the conjugate equations (1.2)
and (2.4) it is easily shown that

n n
2 @y Py = (— 1)® 2 Pty
=1 8=l
In addition, if we have the form (2.11), we found that for any fixed

value j from the interval Ky > j> Ky s the conditions of orthogonality
are satisfied, namely,

n n
- — p=1...,vy—1
Aji(p V=w Z ?s'? nq‘s;‘ = “’.21‘?:5‘!’.5@."” =0 ( ) (2.12)

i=1...,m

s=1
From equation (2.8) and equation (2.12) it follows that Aﬁ =0, if
at least one of two indices i or j is greater than € A (172 0 if one

. . . Jiy_2 .
of the two indices 1s greater than e, + e,; in gen ral A_i(y—Z) =0, if
i, j < xy. In addition, it is evident that A,.'V=2) = 0,7 if i, j < x,,
and both of the functions ¢,,(Y~2) and ¢ ;(¥=2) are identically zero.

Thus, the quantities A ‘i(y-—z) can differ from zero for only those
values of the index i, j, which satisfy the inecquality Ky > i, ] > Ky_g°

Having established the above properties of the quantities A j‘-(y“z),
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we- pass to the determination of the characteristic exponents of the quasi-
harmonic system (1.1). Substituting equation (2.1) into equation (1.1) we
have the following system of equations:

d n
= Dlas+efe® O +B O+ Jys—oys  (213)

B=1

In the nondegenerate cases, as has been shown, the characteristic ex-
ponents a will be expanded in the powers of ui/y, wherey = 1, ..., g,
and for any ¥y the number of the expansions in the ul/y is equal to vey.
Therefore the characteristic exponent a and the periodic functions y , can
be written in the form of the series

@ =apl e, oy, =y, 0 4w ’7.’/:(1)‘1‘!’-2 Pry® ... (2.14)

We begin with the determination of those characteristic exponents,
which can be expanded in powers of ug. Substituting the series

a=pay Fpiag ., Ys = Y5O+ py 4 iy 4 (2-19)

into (2.13), we obtain the systems of differential equations

dy,(© <
d’t —_ 2 asﬂyﬁ(o) (2.16)
=1
dy () < e
= D) Gapy o ® + D) fupPyp® — 0,5, 2.17)
B=1 g=1
dy, (2 e i
(;t = 2 aspys® + Z (fssPYa® + fsa@ya®) —  a1y6™) — 0595 ete.
B=1 g=1

The system obtained, (2.16), has a family of periodic solutions

Y@ = M %0y + ... + Mlosm (2.19)
where Mio is an arbitrary constant. From the conditions of the periodicity
of the functions y . 1), we obtain

Pj = (BJI —-alAjl)M1° + see + (BJm’—alA]m)Mmo = 0

Gj=1,...,m) (2.20)
where
o W n
Bn=§ DS, fsaVopids; dt, Aa-i:S D) @sithe; dt (2.21)
0o s, § 0 §=1
As shown, Aji =0 for i, j> e,. Therefore, the system of equations
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(2.20) can be written in the form

(Bjn— a1 4;) My° + ... + (Bjo,— a1 4je) M,° + BjogsMo4s® + oo +
+ B"mMmg = 0 (f = 1,..., el)
BuMy® + .. + BimMp® = (i=e+1,..,m (2.22)

and consequently, the coefficient a; is the root of the algebraic equa-
tion

Bn —— alAn 1'.‘3’191 — alAn‘ Bl,eﬂ-l vou Blm

A1 — Bexl —-—alAm e Be‘c‘ —a;Aeie‘ Bex-eri'l"'Belm — 0 (2.23)
T Bitim
Boge oo Bom

which is of order equal to €,. The equations which are obtained will not
be satisfied identically if the last m — e, rows (and colums) of the
determinat A,, which do not contain a,, are linearly independent. Thus,
we have obtained e, existence conditions for the expansion of the
characteristic exponent in powers of i, in a form different from equation

(1.20).

In nondegenerate cases the condition of linear independence of the
m — ¢, last rows (and colums) of the determinant A, is satisfied. More-
over, all the e, roots of a, are simple. Let one of these roots be a,.
Then, among the minors of the m -~ 1 order determinant A1' at least one
minor is not equal to zero, and from the system of the equations (2.22)
the quantities M‘.O can be found, from which one, say M.°, can be arbit-
rary. The quantities ¥,°, ..., M,_,° a, are simpie solutions of the
system (2.22), and for them

3 (Piyesy Ppy)
SO o a7 0 (2.24)

For a nonzero determinant (2.24) we can formally construct the series
(2.15), with as many members as we desire.

In fact, the periodic solution for ys( 1) is of the form
Yo = MWy + oo + M V95 mq + Man®0um + 30" (2.25)

where Mi(”, coe, M,_l(i) are arbitrary constants, and y.“) is any
particular solution of the periodic system (2.17). Substituting (2.19)
and (2.25) into (2.18), we obtain from the conditions of the periodicity
of the functions y . 2
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ey m—1
D (Bji—adi) Miw 4+ D) BuM —
i=1 i=ert1

— ay ZAjiMio-i—Cj: 0 (7 =1,....,01)
iw]
(2.26)
leMl(l) + e + Bj,m—le-—l(l) + C, = 0 (f =€ + 1,..., m)

where C. is an arbitrary constant. From the system of equations (2.26)
we can find the quantities Mi 1), ceey M;_l(l in such a way that the
determinant of this system coincides with nonzero determinant (2.24).

Thus, successively one can determine all coefficients a,, a,, ... of
the series (2.15). Assuming as a, all e, roots of the equation (2.23) in
succession, we obtain e, characteristic exponents of the system (1.1)
which can be expressed i1n integer powers of .

We pass to the determination of these characteristic exponents which
can be expanded in integer powers of pl’2, The number of such exponents
is equal to 2e2.

Substituting the series

@ = phay + pas 4 p'hag 4 ..., Yo = y® + why,® + py,@ 4 ... (2.27)

into (2.13) we obtain the system of equations

dy,® < dy, 0 <
— = 2 Gy, T = 24y — 4y,
B=1 =1
(2.28)
dy,® i -
d‘t = E aspyp® 4 2 /58P Ya9— 419,V — a5, ete.
p-1 p=1

Assuming for the fundamental solution (2.19), we obtain the conditions
of the periodicity for the functions Y 1,

4y (MPAj 4 . + Mp®Ajm) =0 (G =1,..., m) (2.29)

Because 4., = 0 for i, j > e,, the last m - e, conditions (2.29) are
identically satisfied, and the first e conditions, for a, £ 0, take the
form

M°Aj + ... + M Aje, =0 (i =1,., &) (2.30)

Let us show that the determinant IAji| of the system (2.30) differs
from zero. In fact, in the opposite case the equation (2.30) will admit
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at least one of the solutioms ¢,, ¢,, ..., c,, different from the trivial
solution ¢, = ¢, = ... = ¢,y = 0. Then, assigning to the i a fixed value
P, equal to one of the numbers from the series 1, ..., e, we replace the
solution of the system (1.2) by the solution ¢, * = ¢, + +0 + €01P,,4:
leaving other solution d). i for i £ p unchanged. For the new system of the
fundamental functions ¢»,1, ooy ¢a,p-1' ¢3P" ¢’:P+1’ cees ¢" the quantity

. - .
AiP is given by

g1

(8] n
Ap* = S Z Psp*Psj At = C1Aj1 + .o + Celje, = 0
0
(f=1,.., &)

In addition, A. * = 0 for j > e,, then Ajp‘= cee =4 p“‘ = 0, which is
contrary to the conditions (2.16); this proves that the determinant
|A_Bil # 0. Thus, the equation (2.30) can have only the trivial solutiom

ME- =M 0=

Therefore,
Y’ = Me 41" Pseit1 + oo + Mn’Pum (2.31)
dy, () n m
= D apys® — ay Y Moy (2.32)
g=1- f=et1

where the constants ¥, +1°, AN M_° remain undetermined. The family of
periodic solutions of the system (2.32) is given by (2.33)

Y = MWy + ... + MunWopm + a5 (M:1+1 ‘Pl.e;+1(” + ...+ Mmo?lm(l))

where Ml(i), coey M.(l) are new arbitrary constants.

Because 4, = 0 for i, j < ey andA-i(l) =0for i j< e, + €, the
conditions of the periodicity of the fi’mctions Y, 2}, with no further
transformation, are obtained in the following form:

Pi= X (Bji— a?AxW)M;° 4 D BiMe =0 (i=e+1.. e1+e)

ime, 41 w41
(2.34)
Pj= Bje.yiMeyi" + ... + Bijm Mypn® =0 (=x+1.., m

Pi = Bj.e.+1Me.+1° + ...+ Bijm° —a (Alel(l) +... 4+ Aje,Me‘(l))
(l = 1)'--1 el) (2.35)

The constants Af:1+1, ceey M_(°), Ml(l), ceey Mel(i) in equations (2.34)
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and (2.35) are not all zero, only for such values of a,, for which the
the determinant of the system (2.34) becomes zero, i.e. they are roots
of the equation

u 1
By tret1— 024G Lot oo Bertiog — 9124800 Berrsots - Beytrm (2.36)
- 1 i =
AE - B"l- e+ "12‘4:&3 (2% 5 Bx T alest,L.(l)Bx,.x,-{—l b Bx,m - 0
Bypseiqn « e By t1m
e+ < e e e Bom

Indeed, 1f the determinant A, # 0, then from the homogeneous system
of equation (2.34) it follows, that M, 1° = .. =M, °) = 0; however, if
a, £ 0, then from the system (2.35) wiﬂ; the determinant [Aji | £ 0, we
obtain that M, Vo= Mel(l) = 0,

From equation (2.36) all 2e o characteristic exponents can be determined
to the first approximation, if the last m — x, rows (colums) of the
determinant A, are linearly independent. If, in addition, all roots are
simple, then assuming a, as one of these roots, we find the quantities

Me1+1°, cees M.°, from which, say M.°, can be arbitrarily chosen; whereby
3 (Pyyy oo Pr)
— 5 .37
0L, M7 a0) +0 (2.37)

The constants M ° ..., M°, obtained from the system of equations
+1 [ (1§

(2.35), uniquely ditermine Ml(l), cees Me1

Exactly as in the case for y = 1, it 1s easy to show that for a nonzero
determinant of (2.37) the series (2.27) can be formally constructed with
an arbitrary number of terms.

Consider the case y = 3. Substituting the series

o = P’ll'al + !""l'a2 + ceey Yo == ys(o) + P'l"ya(l) + }L."y,(z) + ... (2.38)
into (2.13), we obtain
dy (o) . dy () -
= 2 Gy T = Dty — a1y®
B [}
dy,®

Al
da = ZJ as3yp® — a1y — agy,?
dy, (3) g
TRE ‘
— = ?(lsaya‘a) + %/aa(nyﬁm_aly‘(z) — Y, — agy,© etc.

From the first two systems of equations we find that for the functions
y‘(°) and y, 1) the equations (2.31) and (2.33) remain valid. The condition
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of the periodicity of the function y.(z) is given by

m m
Y
0 0y Aphi® 40 ) Mi@A4;0 4
i=1 feme 41
m
o ) Medy=0  (=1t..m
tme, 1

The last = — »

he last x, condition:
K3 ;f these can be written as
ay (AM, 0 + ... 4 4;e M, ) =0, i=1..,a (2.39)
a? (A0 41 VMo 11° + ..o + 45, 0OM,.°) =0, i=ea+t+1i,.., % (2.40)
It is not difficult to show that the determinant of the system of
equations (2.40), IAji(l) |, differs from zero. Therefore,
My f=.=M_ S’ =M®=..=MW=0

and the functions -73(0)' y‘(l), ys(z) will be equal to

m m m
ys(") = 2] -nlioc?sir ys(l) = 2 A{i“)@si + a4 2 Mi°<Psi(”

imxatl imertl §=xpH1
m m m m

9= D M®og + a; D) Mg, 4+ a2 > Mopu® +a, D M0
i=1 ime, 41 i=xy+1 %41

Transforming the conditions of the periodicity of the function we ob-
tain

m e
D BiMie—ay QM®A;=0 (=1,.,¢)
, et « 1 (2.41)
Y BiMP —a? Q) MiWA;0 =0  (=er+1,., %)
=¥yt {41

m »,
D BiMe—a® D M40 =0 (i =% 4 1,0s %3)

iwny-t1 =, 41

Y BiMye =0 (G=%+1,.., m

Ty 1

(2.42)

From the system of equations (2.42) it follows, that the constants
Mi° differ from zero only for values of a, which satisfy the equation

— (2 (2
B“a+1.*-+1 alsA“l+l~"a+lB"s+1-“o_alaA"a)‘}'l.“aBuri‘l. LIS S B“:‘f‘l-‘m

...............................

3 4() — 2)
A:; = BK..X.—}—I —alqAxn *5+1 BK:J‘A alaA"h”a Bxc-"4+1 s B"A’ m =0 (2-43)
x‘+l'x.+l llllllll . *« ® + 2 s w + s & e * Bx‘+l"’l
Byt s - - o e e e B
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where k, = e, + e, and K, = e, + e, + e;. If the last m — x; rows (and
colums) of the determinant are linearly independent and all roots

of equation (2.43) are simple, then the series (2.38) can be constructed
with an arbitrary number of terms. For y = 3 we obtain for the first
terms a, of the series (2.14), the same structure as fory = 1, 2, 3.
The proof of this statement will not be given.

Until now we have considered the determination of the characteristic
exponents of the system (1.1) in the case of resonance. If among the
roots of the fundamental equation (1.3) there occur pure imaginary roots
of the type A =1 {8, A =1+ (2np /@ + B)i, where B is neither zero nor
a multiple of the quant1ty 2ﬂ/aa then the characteristic exponents,
correspond1n7 to these roots, can be written in the form of the series
a=1if8 +u ya + uz yaz + +.., as described previously, without essential
change.

Remark. In the above study we have used the conditions of periodicity
(2.7), in order to obtain certain general dependencies. Practically, we
can write down the existence conditions for the periodic solutions with-
out recourse to the canonical form or considerations of conjugate systems
(which- will not be done here).

3. The results obtained will be of use in the investigation of the
stability of the periodic solutions of the quasilinear system of the
type.

= D) awszs + o (1) + uFs(t, 2) (3.1)
p=1

where a_p are constant coefficients and the functions f_and F_ are con-
tinuous and periodic with respect time t, with period . In addition,

F' are analytic in the variables 2y e, z,. We assume that the corres-
ponding matrix || a B BI| has the same structure as an analogous
matrix for the quasiharmonic system (1.1), shown above. We restrict our-
selves to the case of resonance, i.e. we assume that among the roots of
the fundamental equation (1.3) there exist zero roots A, = 0 and the
roots of the formA =+ 2mp 1/«)(p is an integer), to which no simple
elementary divisors correspond The real parts of all other roots of

equation (1.3) are negative.

Note that the quasilinear systems (3.1), whose pure imaginary roots
A Au of the fundamental equation have elementary divisors of the second
degree {g = 2), occur in many important practical problems, when the
frequency of the perturbed forces is considerably greater than the
natural frequencies of the system. Such problems artse, in particular,
in studying the dynamics of high speed machinery and mechanisms,
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Let the system (3.1) have the periodic solution z, = é,(t, 1), which
is analytic with respect to a small parameter g, and whose stability is
to be studied. Using the variational equations for these solutions, we
obtain

oF, (t, z,
i J P ) £ ( fug s 1) = -‘f,—a“’) (3.2)

i.e. a quasiharmonic system considered above.
In nondegenerate cases the following propositions are valid.

(1) If the roots A;, A , have only simple elementary divisors, then
for the asymptotic stabllltv of the periodic solution, it is sufficient
that in all roots of equation (2.23) the real part has to be negative.

In that case the problem of stability is solved by using the Fouth-Hurwitz
criterion.

(2) If the critical roots Ao, w have elementary divisors of the
f1rst and second degree, then for the stability of the periodic solution
=é, (z, t) it is necessary that the roots of the equation (2.23) have
no p031t1ve real parts and the square roots of the equation (2. 36) are
real negatives.

The first condition is obvious; the necessity of the second condition
follows from the fact that in equation (2.36) a, occurs only in even
powers.

Both conditions are necessary, but they are not sufficient for stabil-
ity of periodic solution for ¢ = 2.

(3) If the critical roots Ay, A, have elementary divisors of the
third degree, then the periodic solution z, = ¢’(t, #t) is unstable.

In fact, let a,> = v; then for any value of v, either complex or real,
which satisfies equation (2.43), the coefficient a, will take on at least
one value, whose real part is positive.
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